Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids

نویسندگان

  • Randolph E. Bank
  • Jinchao Xu
چکیده

In Part I of this work, we analyzed superconvergence for piecewise linear finite element approximations on triangular meshes satisfying an O(h2) approximate parallelogram property. In this work, we consider superconvergence for general unstructured but shape regular meshes. We develop a postprocessing gradient recovery scheme for the finite element solution uh, inspired in part by the smoothing iteration of the multigrid method. This recovered gradient superconverges to the gradient of the true solution, and becomes the basis of a global a posteriori error estimate that is often asymptotically exact. Next, we use the superconvergent gradient to approximate the Hessian matrix of the true solution, and form local error indicators for adaptive meshing algorithms. We provide several numerical examples illustrating the effectiveness of our procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of recovery type a posteriori error estimators for mildly structured grids

Some recovery type error estimators for linear finite elements are analyzed under O(h1+α) (α > 0) regular grids. Superconvergence of order O(h1+ρ) (0 < ρ ≤ α) is established for recovered gradients by three different methods. As a consequence, a posteriori error estimators based on those recovery methods are asymptotically exact.

متن کامل

daptive finite - element modeling using unstructured grids : he 2

Existing numerical modeling techniques commonly used for electromagnetic EM exploration are bound by the limitations of approximating complex structures using a rectangular grid. A more flexible tool is the adaptive finite-element FE method using unstructured grids. Composed of irregular triangles, an unstructured grid can readily conform to complicated structural boundaries. To ensure numerica...

متن کامل

Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part II: The piecewise linear case

We extend results from Part I about estimating gradient errors elementwise a posteriori, given there for quadratic and higher elements, to the piecewise linear case. The key to our new result is to consider certain technical estimates for differences in the error, e(x1)− e(x2), rather than for e(x) itself. We also give a posteriori estimators for second derivatives on each element.

متن کامل

Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes

A class of a posteriori estimators is studied for the error in the maximum-norm of the gradient on single elements when the finite element method is used to approximate solutions of second order elliptic problems. The meshes are unstructured and, in particular, it is not assumed that there are any known superconvergent points. The estimators are based on averaging operators which are approximat...

متن کامل

A posteriori error estimation for hp-adaptivity for fourth-order equations

A posteriori error estimates developed to drive hp-adaptivity for second-order reaction-diffusion equations are extended to fourth-order equations. A C1 hierarchical finite element basis is constructed from HermiteLobatto polynomials. A priori estimates of the error in several norms for both the interpolant and finite element solution are derived. In the latter case this requires a generalizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003